

Can the ceramic sector achieve the CO₂ emission reduction targets in the coming years?

CerOh! Strategies

Can the ceramics sector achieve the EU's greenhouse gas (GHG) emissions reduction targets?

≻ YES!!

- ✓ From a <u>technical</u> point of view, it is possible to achieve a reduction of 85-87% of the CO₂ emissions in 2050
- ✓ But... <u>a deep transformation</u> is necessary of both, current products and processes

≻ How??

✓ In CerOh! Strategies Project, ITC is analysing different ways to achieve this target in the Tile Ceramic Industry

➤Main objective:

To study strategies based on the principles of circular economy to adapt the ceramic tile manufacturing industry to the low-carbon scenario proposed for the year 2050

CerOh! Strategies

CerOh! Strategies Project

- Project: Circular economy strategies for a low-carbon ceramic industry
- Founded by:
 - IVACE Instituto Valenciano de Competitividad Empresarial
 - Programa Operativo FEDER de la Comunitat Valenciana 2014-2020
- Call: IMDEEA -Programa de I+D en colaboración con empresas
- Grant Agreement: IMDEEA/2018/12 IMDEEA/2019/5
- Country: Comunidad Valenciana (Spain)
- Starting: 1st March 2018
- Ending: 28th February 2021
- Supporting companies:

Una manera de fer Europa

CerOh! Strategies Project

Optimization of current processes:

- Increase solid content of suspensions (atomization)
- Reduce the sintering temperature by means of extremely fussing compositions
- Compositions of wall tile without carbonates

Alternatives to current products

- Glazes without frits
- Reduce the support thickness
- Alkali activated materials and Si-Ca tiles as alternatives to ceramic tiles

Different ways to reduce emissions

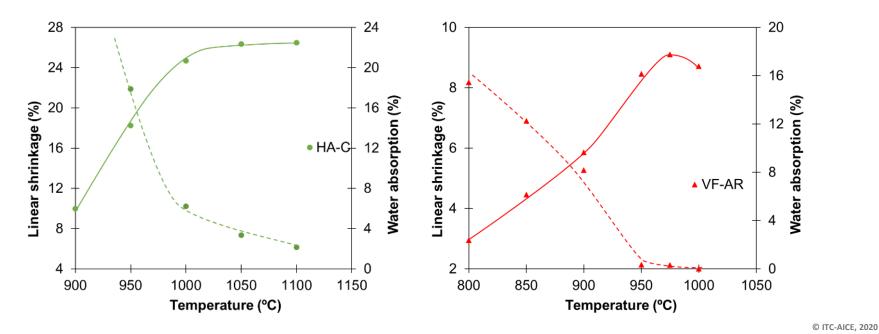
Alternatives to current processes

- Preparation of compositions by dry routes
- Microwave or electric drying
- Full-digital decoration
- > Other technologies to sinter tiles: electric kilns, etc.
- > To unify compositions in only one support
- Develop glazes with different finishes to be used in this only one support

Life Cycle Analysis

Implementation of Industry

4.0 concept



Optimization of current processes. Examples

 ✓ New ceramic compositions to drastically reduce the firing temperature (more than 200 °C) with respect to the current ones

Using of different fluxing materials, as:

- Hydroxyapatite (Ca₅(PO₄)₃(OH)): HA-C composition
- Recycled glasses from different sources, as green containers, lamps, etc.: VF-AR composition

Optimization of current processes. Examples

 Tiles without carbonates and with lower firing temperature: wollastonite as an alternative to calcium carbonate in white firing wall tile compositions, formulating compositions that do not involve a very high increase in cost

Composition	STD	W18	W16V	W10V	W13V
Wollastonite (%wt)	0	18	16	10	13
Temperature (°C)	1140	1140	1100	1100	1100
Linear srinkage (%)	0.2	1.9	2.6	2.6	2.5
Water absorption (%)	16.5	10.9	10.8	10.8	11.0
Emissions reduction (%)	-	42	45	47	46

© ITC-AICE. 2020

Alternatives to current products. Examples

- ✓ The most challenging route: "unfired" tiles, by means of developing low temperature glazes for alkaline activated products and for Si-Ca tiles
- ✓ Reducing the thickness of conventional ceramic tiles by developing formulations with high mechanical strength both before and after firing. So far, thickness has been reduced by more than 30%

(C=compaction, M=milling)

Composition	Red floor tile		Red wall tile		White wall tile	Porcelain tile
Modified property	С	Μ	С	Μ	С	С
Mechanical strengh increase (%)	10	25	10	30	10	10
Emission reduction (%)	5	12	5	14	5	5

Alternatives to current products. Examples

 ✓ Glazes without frits. Using raw materials with high fusibility: nepheline, spodumene, ZnO, etc.

Sample	ESM-19	ESM-11	ESM-25	ESM-28
Temperature (°C)	1180	1180	1100	1100
Brightness (60°)	6	60	87	27
	Matte semi- transparent	White glossy	White high glossy	Satin semi- transparent
Aspect	ESH-19 1180°C	ESH-11 1180°C	EST-25 Hore	EST-28 Hoore

Alternatives to current processes. Examples

- ✓ Energetic transition: from fossil energy sources to not based on them, incorporating renewable energies into the manufacturing process
- ✓ Granulation technologies plus dry milling to produce **granulates**
- ✓ Infrared or microwave dryers
- ✓ Electric kilns
 - Data for production of 1000 m² with continuous kilns (year 2018)

Parameters	Gas kiln	Electric kiln
Maximum temperatura (°C)	1200	1200
Electric cost (€/year)	16,900	355,680
Gas cost (€/year)	133,000	0
CO ₂ emissions costs (€/year)	16,120	0
Total costs (€/year)	166,020	355,680

© ITC-AICE. 2020

Major drawbacks

✓ Most of the proposed actions in the CerOh! Strategies Project involve a <u>high cost increase</u>

 \checkmark To reduce this increase in cost it is absolutely necessary:

- To incorporate <u>renewable energies</u> in the ceramic plants
- A substantially <u>reduction in the cost of electrical energy</u>

All this will require a strong commitment from the **public** administrations

© ITC-AICE. 2020

Thanks!

Paqui Quereda Resp. Lab. Ceramic Comp. paqui.quereda@itc.uji.es Magda Lorente New Materials Area <u>magda.lorente@itc.uji.es</u>

